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ABSTRACT

An approach to the design of contact-diode networks having different

forward and reverse transmission functions is described. Linear graph theory

forms the basis for the synthesis procedure which is an extension of Gould's

method. The properties of single-diode networks are considered first. For

such networks, the two specified forward and reverse transmission functions

are mapped onto a single-contact switching function. Next, an oriented circuit

matrix is obtained and the synthesis of a graph corresponding to the matrix is

attempted on a maximum-loop basis. If no graph exists, the number of columns

in the matrix (correspondingly increasing the number of diodes or contacts) must

be increased until one such matrix yields a realizable network.
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1. INTRODUCTION

It is well known that a switching function expressed as a Boolean polynomial
is directly interpretable as a two-terminal series-parallel contact network, and

that the addition of a bridging element to such a network often yields a switching

function which would require a disproportionate number of contacts in series-parallel

form. Mooret s [13 table of minimal circuits of four variables contains a preponder-
ance of non-series-parallel configurations. Accordingly, systematic network design

procedures which are not prejudiced in favor of a particular network form have long

been the objective of many research workers.

Certain design procedures which lead to non-series-parallel forms depend

upon a special property of the switching function such as total or partial symmetry

[2] , [3] . Other procedures depend upon an assumed network form, such as the

disjunctive tree [ ,[5],[6] There are two approaches to the design problem which

are more general in character. The first is based upon the Boolean matrix [7, 8]

and the second has its foundation in the theory of linear graphs [91, [103 , [11

Probably the first to apply graph theory to contact networks was Okada [91 . is

contribution was in the oynthesis of single-contact networks. The procedure has

since been extended to non-single-contact networks by Gould [10 and Okada and

Young [az]
The primary objective of the work done up to the present time on the application

of graph theory to network design has been the determination of minimal forms. The
procedure is essentially exhaustive in character and, consequently, the computations

become unmanageable as the number of variables increases beyond five [13

Although the minimal-contact solution is of considerable academic interest, it is

often of little value due to the presence of switching hazards. Design procedures

which yield near-minimal solutions and alternative-form solutions in a systematic

way based upon graph theory appear to be a more realistic objective.

The purpose of the present paper is to explore the problems involved in the

extension of the techniques of graph theory to two-terminal networks containing both

diodes and contacts. Under these conditions the transmission function depends upon

the direction of conduction in the source and detector. Examples are given in which

the transmission functions in opposite directions through the terminals are specified.

Various problems encountered along the way are examined and an innovation is des-

cribed which leads in many cases to a simpler procedure for obtaining the network

graph from its loop-set matrix.
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2. SINGLE-CONTACT (S - C) SWITCHING FUNCTIONS

In this section we review briefly the relationship between a two-terminal
bilateral contact network containing only one (make or break) contact per variable,

and its associated graph.

Consider a topological graph G having n + 1 arcs and v vertices. Let one arc

D be labled the distinguished arc, corresponding to a source and detector. The vertices

incident upon D are the terminal vertices of the graph. With each of the remaining

n arcs associate a binary switching variable x i , and let each such variable be distinct

and independent. Each vertex of G corresponds to a node of the contact network. The

paths through D are related to the transmission function of the network in the following

way. First, obtain the collection P of paths through the distinguished arc D; let each

such path be denoted as i . Next, form a term pi which is the product of the elements

in the path I . Under these conditions, the sum of the product terms pi (graph function)

is in a one-to-one correspondence with the transmission function of the network. This

function is called the S-C (single-contact)switching function F . Figure 1 shows a simple

contact network and its corresponding graph. The collection of P of all paths through

D is {a e, adfg, bcde, bcfg} and the corresponding S - C function is F = ae + adfg +

bcde + bcfg.

Synthesis of S - C (Graph) Functions:

The method for synthesizing a graph from a specified S - C switching function

is based upon an important theorem [10 , [14] which states that a basis of any graph's

loop-set vector space may be obtained by taking an independent set of the loop-set

vectors derived from the S - C function. Thus the procedure follows in a straight-

forward way:

(1) The S -C function F is expressed in normal form as a sum of products
in which no product term includes another product term.

(2) A loop-set matrix H is constructed from F. The columns of H correspond
to the arcs in G; one column is assigned to each contact variable and to
the distinguished arc D. The rows of H are the prime* loop-set vectors
of the graph which contain D. Let hij 1 if arc j is in path i and hij = o
otherwise.

(3) By elementary row operations (modulo 2) the matrix H is reduced to a
fundamental loop-set matrix of the type.

L=[ITi
where I is the identity matrix and T is a submatrix corresponding to a
tree of G.

*A prime loop-set vector is one which does not contain any other loop-set vector as a
proper subset.
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(4) A cut-set matrix K, orthogonal to L, in obtained from the relationship

LKT = 0 modulo Z

which requires that

K= [TT I]

(5) By elementary row operations, K is reduced to a vertex cut-set matrix
which contains no more than two l's per column. A linearly dependent
row is finally added giving the vertex-arc incidence matrix J from which
the graph follows immediately.

(6) As a more effective alternative to steps (4) and (5), a graph can be
determined directly [i6] from the tree submatrix T of L in step (3)

i By still another method al a graph can be determined directly from the

cut-set matrix K in step (4).

Synthesis of Non-S-C Functions

A transmission function in which each variable appears only in either the

primed or unprimed form (I. e., a completely monotone function) will not, in general,

correspond to an S-C function having the same number of variables; a suitable graph

might require two or more contacts per variable. An arbitrary switching function

will generally have a number of normal-form expansions. It is not known in advance

which of these, if any, corresponds to an S-C function. Thus the basic problem is to

map a given switching function onto an acceptable S - C function.

Gould's method may be summarized as follows:

From the given switching function, a particular set of prime implicants is

selected. Assuming tentatively that the function is indeed an S - C function, a loop-

set matrix H is formed with a set of prime implicants selected as its loop-set vectors.

The matrix H is tested to see if the space spanned by it is acceptable; that is, linear

combinations of rows which yield a loop through D are formed, and in each case, the

resulting path is examined to see if it is included in the function. If all such paths

are included in the function, the vector space spanned by H is acceptable, and an

attempt is made to realize a graph from it. If no graph is found, then other normal

forms of the function involving no more contacts must be tried to see if one of them

corresponds to an S-C function. Alternatively, row loop-set vectors, which do not

result in additional loops through D, might be added in order to increase the dimensions

of the vector space. These possibilities must be examined to determine if a graph

results. If none of the k-column matrices leads to a solution, or if the vector space

corresponding to H was found to be initially unacceptable, then matrices of (k + 1)

columns must be examined. Such a matrix may be formed by splitting a column

corresponding to some variable xi in such a way that the new matrix is acceptable.

* The existence problem for Boolean branch-networks with only one branch for each differ-
ent literal of the corresponding Boolean form has been investigated by L. Lofgren [17].
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The process is continued until a solution is reached.

In a later section, an innovation is presented which offers some improvement

in the procedure for examining H and in testing L for the existence of a special but

relatively broad class of graph.

3. CIRCUITS CONTAINING DIODES

Consider a graph G having n + 1 arcs {x 1, x2 , x 3 . . . . . Xn and v vertices

{a, b, c, ... t v1 . Let D (a, b) be the distinguished branch and the vertices a, b

be the terminal vertices of the graph. Let the arcs x 1, x, ... , x _1, xi+ 1, x n

represent bilateral contact elements. The branch x1 (1, 2) is taken to be a diode

which conducts from vertex 1 to vertex 2 and represents an open circuit from vertex

2 to vertex 1. We wish to relate the topological paths in G tlhrough arc D to the

corresponding electrical paths through the network. There are several types of paths

to be considered. These are enumerated below:

I. Paths from a to b through D which include no more than one of the vertices (1, 2);

then

Pab = Xi (a, a) x ( , P) .... x n  ( b) D (b, a)

and the transmission. from a to b is

tab x 1 X 2 ... x n

Also,

Pa n (b, t) ... x7 (p ,a) x, (a, a) D (a, b)

and

tba x1 ... xn

thus
tab =ta (Type 1)

II. Paths from a to b through diode r (1, 2) = x i (1, 2)

(i) Paths in which the vertices can be ordered

(a , 2) . I ) . . . ( ,b ) (b , a )

Pab x, (a, -) ... xi., (-, 1) r (1, 2) xi+ 1 (Z, -)... Xn(-, b) D (b, a)

tab xl x i-Xi+l' Xn

Pba = Xn (b,-)... xi+1 (,)r (2, 1) xi-(l-)...X (-, a) D (a, b)

tba 0
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(ii) Paths in which the vertices can be ordered
(a, -. .(,I. .(,b) (b, a) !

By similarity with (i)

tab O and tba= x1... xI 1 xi+l...x n

IMI. Paths from a to b which include both vertices (1, 2) but not branch r (1, 2)

(i) Paths in which the vertices can be ordered

(a,-). (, . .(2, - . .- b) (b, a)

then

pab xl(a-)" . xj(-, 1) xJ+l (1, -)...Xj+k(2. -)... n(-x b) D (b, a)

tab x1.*. xj .. xj+k,.* xn

Pba =  (b, -).. xj+k (-, )...xj+(-, ) xj (1, -)...x 1 (-a) D (a, b)

ta "" xj xj+l" xJ+k'"Xn

therefore, tabo tba (Type 2)

(ii) Paths in which the vertices can be ordered

(a,-) ... (-, 2). .. (1, -) ... (-,,b) (b, a)

By similarity with (i)

tab xl'"'.j xj+l* .Xj+k* .X n

tbx x .. ..x ...X

therefore, tabC tba (Type 3)

The transmission of such a network may be written as T ={Tab, Tba}

Tab = tab (Type 1)+ Z tab (Type 2)+ Dtab (Type 3)

Tba = tba (Type 1) + Ztba (Type 2) + Ztba (Type 3)

where the summation is taken over all paths through D (a, b). We wish now to reverse

the problem. That is, given a specified transmission function as shown above, find

the contact network.

Networks Containing a Single Diode

If a network is realizable with a single diode and one contact per variable,

then it is possible to obtain a consistent unoriented S-C function F from the given

transmission function. Since for eachprOduct in the transmission function:
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tab=tba (Type 1), tab Z) tba (Type 2), tab C tba (Type 3),

the single-contact transmission is expressed as
F 2 ~tab(Type 1) + tauCype 3) + t a(Type 2)]

+Z [tab (Type 7) r (1, 2) +Z[tba (Type 3)] r (2, 1)

Matrix Representation of a Non-Bilateral Network:

Before attempting to synthesize a circuit for a non-bilateral switching function,

it is necessary to consider a suitable matrix representation. As an example, we

consider the circuit shown in Fig. 2a, having the switching function

TaP abc + def + aef + ace + cde

TPQ abc +def+ abf+bdf+bcd

From tl non-oriented graph of the network (fig. Zb) a loop-set matrix is obtained

D de f a b c r1 r2

1 1 J

L 1 . [1 1 = [IT]
* * 1 . li,

where T is the submatrix corresponding to the tree chosen in Fig. 2b. From this

matrix we can generate all loops through D not shown explictly in L by taking the

following combinations modulo 2.

D d e f a b c r1 r 2

12 -1 1 . . 1 1 1
13 1 . 1 . 1 • 1 1 1

14 1 . 1 1 1 . 1
HI 123 1 1 1 . • 1 1

124 1 1 . 1 * 1 1 1

134 1 . 1 1 1 . . 1

1234 1 1 1 1
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The matrix modulo 2 does not convey enough information about the network.
Therefore, an orientation must be assigned to the branches. For the orientation

chosen in Fig. 2 c, the oriented loop-set matrix is obtained

D d e f a b c r 1 r 2

+1 +1+1 +1

L =+1 .- 1 •+1 -
0

+1 . -

The positive direction of orientation of arcs r 1 and r 2 was chosen to coincide with

the direction of conduction through the rectifiers, although it is not necessary to

do so. All loops through arc D can now be obtained by taking linear combinations of

the rows of L in the real field such that each entry in the resulting matrix is either

0, +1, or-1.

D d e f a b c r1 r 2

1 +1 . +1 +1 -1

+1 +1. +1. +1 +1 +1

+1 +1 +1 +1 -1

H +1 +1 +1. +1 +1
0

+1 +1 . +1 +1 . -1 -1

+1 . +1 +1 +1 +1

+1 +1 +1 +1

Transmission T corresponds to loops oriented in the + direction through D(P, a).

Consequently, we see that the first, third, and fifth rows of H 1 represent non-conduc-

ting paths from a to P3 of the graph since, in each, either r 1 or r 2 has a negative sign.

Correspondingly, if we multiply all rows of the matrix by - 1, the second, fourth, and

sixth rows represent non-conducting paths with respect to transmission from P to a.

In the synthesis procedure to be described, the technique of Gould is employed

in part to obtain an acceptable loop-set matrix. However, since his problem dealt

with bilateral elements only, there was no need for orienting the loop-set matrix.

Thus the matrix obtained initially will have no orientation. It remains to convert a

loop-set matrix modulo 2 into an oriented matrix containing elements from the real

field, in such manner that the sign convention is consistent with the original matrix.
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Orienting the matrix:

A matrix L = [I TJ modulo 2 can be replaced by a matrix containing elements

+1, -1, and 0, keeping the ranks of all submatrices invariant, if and only if no

normal form of L contains either of the following submatrices I15].

1 01 1 0 11

Sor

1 1 -- 1 oj

Furthermore, every oriented matrix L must be an E-matrix; that is to say, a matrix

such that the determinant of every square nonsingular submatrix is either +1 or - 1.

Since the elements of I in L = I ] appear only once, the sign of each is arbitrary

and may be taken to be +1. In submatrix T, all non-zero elements of one column and

one non-zero element in each of the remaining columns may be set equal to +1. Finally

one non-zero element in each row may be set equal to + 1, provided that no non-zero

element in that row had been previously given a + or - sign. The sign of the remaining

non-zero entries of T might be determined by applying the previously stated theorem

which requires that the determinate of every square submatrix in T be +1, -1, or 0.

However, the execution of this procedure becomes unwieldly, except in the case of

very small matrices. An alternative procedure is possible. The alternative is

applicable to a class of L matrices, which nevertheless includes the great majority

of switching circuits.

Maximum L Matrices:

We now return to the example circuit of Fig. Za and choose a tree T described

by the arcs ID, a, e, rl, r } as shown in Fig. 2d. If the arcs of the tree are given

positive orientations with respect to the ordered path D a rI e r 2 , then orientations

for the links b, c, d, f can be found (Fig. 2d) such that each loop-set vector in the

corresponding L matrix will contain only +1 non-zero entries; thus

d b f c a e r 1  r 2  D

+1.* . +1 . +1.

+1 . . +1 +1 +1

LM +1 +1 +1 +1 +1

+1 +1 +1 +1 +1 +1
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The tree chosen in the previous example is a path which is included in a

maximum loop of the graph. A maximum loop is defined as a prime loop passing

through v vertices and containing v arcs.' It is easy to demonstrate that for any

graph which contains a maximum loop, a maximum-loop matrix L M can be found and

that for such a matrix all non-zero elements can be set equal to +1; one row of the

corresponding T submatrix must aontain v -1 arcs. All graphs such as those shown

in Fig. 3 do not possess maximum loops. However, the graph of Fig. 3a can be

converted into a maximum-loop graph by replacing one or both of its series-connected

branches (a b or c d) by a single equivalent branch. Thus many graphs containing

series-connected branches can be so converted into maximum loop graphs. For a

-class of non-oriented L matrices, the orientation process consists in reducing L to LM
by linear row operations modulo 2, and then setting all non-zero entries equal to + 1.

Realization of LM Matrices:

Since the tree submatrix TM for a given LM corresponds to a maximum path

containing all elements of TM , the process of finding a graph, if one exists, is

equivalent to the process of determining the appropriate ordering of the elements. The

procedure is easy and can be carried out rapidly by direct inspection of TM , or more

formally by Goulds method [16]. If no graph exists for a given TM , the ordering
requirements for two or more rows are contradictory.

The ease with which an LM can be realized suggests that it be adopted as the

basis for synthesis of bilateral networks. Thus, for a given L corresponding to an

acceptable non-oriented loop-set matrix H, the procedure is to convert L to an LM

by linear row operations. If L cannot be converted to an LM, even by replacement of

series-connected branches by a simple equivalent branch, then no graph exists or,

if a graph exists, it is not in the class of graphs represented by LM matrices. The

restriction imposed by adopting LM as a basis for synthesis would not appear to be un-

reasonable for graphs of switching circuits.

Synthesis of a Diode-Contact Network:

We have a method for converting a matrix modulo 2 into a matrix in the real

field and of interpreting this oriented matrix to determine the various paths through

the diodes. It remains to establish a procedure for obtaining a suitable loop-set

matrix. The approach is outlined in the following:

1. We make the initial assumption that the network can be realized with one
contact per variable and one diode. Accordingly, the S-C function F is
obtained from the transmission functionTab, Tba} , in which Tab and Tba

In a graph, a path-tree is said to be Hamiltonian if it passes once and only once through
every vertex of the graph; ;nA a loop is said to be Hamiltonian if it passes once through'
every vertex of the Graph [18J
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are in prime -implicant form. The loop-set matrix H is then constructed.

2. The loop-set matrix is tested for acceptability and, if the matrix contains
unacceptable paths, contacts may be split. However, a diode may also
be split to block an unacceptable path; if there are two diodes connected
back-to-back in a path, then there is no electrical transmission between
the terminals.

3. Once H has been made acceptable, the matrix is converted to an LM matrix.
If necessary, additional linearly independent rows corresponding to
internal loops (i. e., not pas'sing through D) may be added to H. If no L M
is possible, it is assumed that no graph exists. Other arrangements
acceptable for splitting the contacts or another form of F must be examined
until an LM is obtained.

4. L M is oriented immediately and the paths through D are checked. If the
diode orientation is inconsistent with the transmission requirements the

diode may be split to obtain a suitable set of oriented circuits.

5. Once the oriented matrix has been made acceptable, it is converted, if
necessary, again to the maximum loop form 1 and an attempt is made
to realize a graph from its tree submatrix. M

1
6. If there is no graph corresponding to L M' another form c.' contact or

diode splitting must be tried and the attempt repeated.

Examples illustrating the various ideas will be presented in the following

section.

4. EXAMPLES OF SYNTHESIS PROCEDURE

In this section we present first two examples involving bilateral switching

functions in order to illustrate certain ideas related to the LM matrix. This is

followed by three examples involving non-bilateral functions. Since we have not

improved the process of finding an acceptable H matrix, we do not dwell on this

aspect of the problem. It should be assumed that the splitting of contacts, when

necessary, is executed as in previous works [101 1 [iz]

Example 1:

The switching function is given by the Karnaugh map shown in Fig. 4. The

first three prime implicants in f cover the function and are chosen as a basis for the

loop-set matrix H. H is acceptable since the modulo 2 sum of the three rows contains

the termy'y and z z which represents a non-conducting path through D. By interchanginp

columns, an L is obtained immediately, but it does not contain a maximum loop.

However, we observe from L that y'z and wy appear as series elements. When each

pair is represented as an equivalent matrix element, LM is obtained. The graph is

drawn by inspection. The result is minimal in contacts but not in springs.
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The rank of H and L is seen to be 5; consequently, a row containing 6 ones is

necessary, but the largest row in either matrix contains 4 ones. However, by appending

a suitable row, representing an internal loop, the rank would be decreased by one and

the number of ones required in some row would be 5. To be suitable, the appended row

must not be a proper subset of another row; otherwise the second row could not be a

prime loop set. Furthermore, the appended row when added to any D-row in the

original H must yield a D-loop contained in f. Suitable rows in this example are

wzI and wz'z, and both yield graphs as-phown in Fig. 5. Other solutions are also

possible.

Example 2:
The bilateral switching function is given in Fig. 6 and the loop-set matrix H1 is set up

fromthe irredundantprime implicants corresponding tof 1. The dependent row (123) des-

cribes the term wx which is not contained in the given function, and is therefore unacceptable.

To obtaina solution, contacts w' or x' mightbe split invarious ways. Alternatively, a loop-

setmatrix H2 can be set up from the redundantfunctional form f 2. Inthis case, the depend-

ent row (123) corresponds to the unacceptable term wxy. An acceptable loop-set matrix

may now be obtained by splitting the y' contact into y and y2 in one ofthe three ways (a. b,

or c) shown inthe figure. Combinations (a) and (b) lead to non- realizable matrices; combin-

ation (c) leads to the maximum-loop matrix LM2 which is realized by the graph shown in

Fig. 6, the result is minimal in contacts but not lIS springs .

Other solutions canbe obtained by appending suitable rows corresponding to internal

loops. Rows corresponding to wx' orw'x, for example, are suitable. The result obtained

by adding a wx' row to LM2 (where w x' and wx are now separated into individual elements
c 1w ', x , w, x) is shown in Fig. 7. This solution is minimal in both contacts and springs

Example 3:
The non-bilateral transmission function T 1 2 , T2 1 } is given in Fig. 8. By

comparing terms in T 12 and T 2 1, we find:

Type 1 - abc, fg, cef

Type 2- ag Dabeg, adg, and ace =)acde

Type 3 - bcf:zbcdf

The non-oriented S-C switching function is taken as F and the matrix H is formed.

H is converted directly to LM as shown. Since all D-loops in H are acceptable,

details are omitted. LM is, of course oriented immediately with positive signs

(not shown) assigned to non-zero entries. Row 2 in L M represents the transmission ag

which belongs to T 1 2 . Therefore, let the +D indicate terms in T 1 2 and +1 indicate the

conducting direction of the diode. All terms of interest including the diode must now

be generated; they are rows (2-1) and (I + 2 - 4 - 5) as shown. The first yields a
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transmission path of ace in T 1 2 and the second a transmission path of bcf in T2 1.

Both of these are consistent with the specified transmission function. Therefore,

LM is acceptable, and the graph is drawn directly from LM as shown.

Example 4:

The loop-set matrix corresponding to the F function for the given transmission

function is constructed as shown in Fig. 9. Rows 6 and 7 of H are linearly dependent

and may be dropped. The unacceptable dependent rows obtained from H are (234),

(235), and (245). We note, however, that if the diode is split into two diodes(r 1 and

r.) the unoriented matrix can be made acceptable. The allowable combinations of

r and r 2 are shown as (a), (b), and (c) in Fig. 9. If combination (a) is tried, H can

be converted directly to LMl in Fig. 10. Row 3 of LMl corresponds to the term (ae)

in T 12 ; thus let the plus sign for rI and r 2 indicate the direction of conduction and let

+D indicate transmission from terminals 1 to 2 through the network. Other paths

through rI and r 2 may be generated from LMI. Among them is the path (124) or

(bcdrIr 2 ) which should belong to T. 1 , but the two diodes are connected back-to-back

with r1 blocking. Hence the oriented matrix is unacceptable.

If either combination (b) or (c) is chosen, the matrix LMZ results. Since

row 1 represents the path abe which is in T2 1 , let +D represent the path from terminals

1 to 2, and let +r2 represent the reverse biased direction of r . Similarly for row 3

let +rI indicate conduction and +D represent the path from 1 to 2 through the network.

Then the term ae is in T17. All other paths of interest are now generated as shown

in Fig. 10. Row (123) is included in de. Row (24) indicates that cd is in TI?. Row (34)

indicates that the term ac is in TIZ. Finally, row (1234) shows that the term bcd is in

T 21 . LMZ is acceptable as an oriented loop-set matrix and the graph is drawn.

Example 5:

From the specified transmission function, the non-oriented matrix H is set

up in the usual way as shown in Fig. 11. Row (123) corresponding to the term xy'z

is unacceptable. Two approaches are possible: split contact x', or split diode r.

If x' is split, H in converted to L as shown; if r is split, H can be converted to L

of Fig. 11. However, L contains the submatrix

1
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and so is unrealizable. L 1 is readily converted to a maximum loop-set matrix LMl.

Now, by inspection of the sign of r it is clear that either both of rows 1 and 2

(xyzt and xryz) will be in T12 or in T 2 1, but that it is not possible to place one term

in each transmission. Hence, Lij is unacceptable. If, however, r is split into

two diodes r1 and r2 , then the orientation of each may be selected at will. Thus

matrix LMl is obtained. (L is maximum loop if r2 is considered as part of the

x z series branch. ) In this result, +r I indicates the direction of conduction of r

and +r 2 is taken to be the reverse-biased direction of r . The graph follows

immediately.

5. CONCLUDING REMARKS

This work represents an examination of the problems involved in the application

of the theory of linear graphs to the synthesis of bilateral and non-bilateral contact

networks. The objective is not to determine minimal circuits, but to search for

techniques which might lead to better ways of obtaining economical circuits. The

adoption of the maximum-loop matrix LM from an acceptable H matrix as the basis

for synthesis seems to have the advantage of increasing the speed with which alternative

forms of H can be examined. The selection of an acceptable (and economical) H matrix

in a straightforward way is yet unsolved. However, it would seem to be possible,

with further development, to make use of the maximum-loop condition in the determin-

ation of acceptable split-contact arrangements.
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